DATORÖVNING 3: MER OM STATISTISK INFERENS.

Storlek: px
Starta visningen från sidan:

Download "DATORÖVNING 3: MER OM STATISTISK INFERENS."

Transkript

1 DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt Centrala gränsvärdessatsen (CGS) skall en summa av slumpvariabler bli ungefär normalfördelad om antalet variabler i summan är tillräckligt stort. Vidare gäller att dessa variabler skall vara av samma sort, man brukar säga likafördelade, och inte bero av varandra. Det enklaste exemplet på detta är att man gjort ett urval om n observationer. Var och en av dessa är som regel oberoende tagna. Detta gäller om populationen är oändligt stor eller åtminstone mycket stor. Varje enskild observation är ju när den skall göras ett oskrivet kort och detta brukar modelleras med att det värde man får är en observation av en slumpvariabel, som gäller enbart just för denna observation. Antag t ex att vi skall göra ett urval av n personer bosatta i Sverige och undersöka hur många syskon de har. För varje utvald person är antalet syskon en slumpvariabel och det innebär att vi har totalt n slumpvariabler i vårt urval. Innan vi har frågat respektive person om antalet syskon vet vi ju inte hur många de är och det gör denna storhet till en slumpvariabel. Om vi nu vill göra en bedömning av det totala antalet angivna syskon i vårt urval kan vi skriva detta som där X 1, X 2,,X n är antalet syskon hos var och en av de n personerna. Denna summa är nu enligt CGS ungefär normalfördelad med väntevärde n och standardavvikelse n där och är medeltal och standardavvikelse för antalet syskon i hela populationen, dvs bland antalet bosatta i Sverige, om n är tillräckligt stor. (Vi bryr oss i detta fall inte om det faktum att två eller flera personer i populationen kan vara syskon och därmed ha lika många syskon, vilket egentligen komplicerar det hela men kan bedömas vara ett mindre problem eftersom populationen är så stor.) Vidare gäller att urvalsmedeltalet av antalet syskon, dvs X 1 n n X i i 1 blir ungefär normalfördelad med väntevärde och standardavvikelse. Man kan (och ska) naturligtvis lita på dessa resultat, eftersom det handlar om ganska lång tids forskning och matematiskt ovedersägliga resultat, men det är ändå nyttigt att empiriskt studera hur bra denna approximation är och vad ett stort n kan vara. 1

2 Börja med att mata in värdena 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 och 10 i kolumn C1 i Minitab. Antag att detta är det antal syskon som kan förekomma i en viss population, dvs ingen i populationen har fler än 10 syskon, och det finns de som inte har några syskon alls. Antag vidare att följande proportioner gäller: Antal syskon Frekvens i populationen 0 16% 1 35% 2 29% 3 10% 4 6% 5 2% 6 0,5% 7 0,5% 8 0,4% 9 0,4% 10 0,2% Med hjälp av denna frekvenstabell, räkna för hand ut medeltalet,, och standardavvikelsen,, i populationen av antalet syskon. Notera dessa värden. Lägg nu proportionerna som decimaltal i kolumnen C2, dvs. mata in värdena 0,16, 0,35 etc. i C2. Antag nu att vi skall göra ett urval om 10 personer från populationen och bestämma hur många syskon var och en av dessa har. Via slumpvariabelbegreppet kan detta utföras genom att slumpmässigt generera 10 observationer från den slumpvariabel som antar värdena i C1 med sannolikheter motsvarande värdena i C2. Praktiskt kan vi göra detta med kommandot random enligt följande: MTB > random 10 c3; SUBC> discrete c1 c2. Kommandot innebär att vi slumpar 10 observationer från kolumnen C1 och lägger dessa i C3 och att slumpningen görs så att varje värde dras med en sannolikhet som motsvarar värdet i C2. Ni bör därför få observationer i C3 som till större delen är något av värdena 0, 1, 2, 3 och 4, eftersom dessa värden har betydligt högre sannolikheter än de övriga (motsvarar högre frekvenser i populationen). 2

3 Beräkna sedan medelvärdet av värdena i C3 och lagra detta i första raden av C4 med följande kommando: MTB > let c4(1)=mean(c3) Stämmer detta medelvärde någorlunda överens med medeltalet i populationen? Borde det göra det? För att se hur väl CGS stämmer måste vi på något sätt uppskatta samplingfördelningen hos detta urvalsmedeltal och då krävs att vi upprepar urvalsförfarandet ett stort antal gånger. Kunde vi till exempel skapa urval av detta slag borde motsvarande urvalsmedeltal ge en hyfsad bild över hur ett urvalsmedeltal kan variera. Nu är det ganska arbetskrävande att upprepa ovanstående gånger varför det åter är dags för ett makro. Öppna Notepad (Start All programs Accessories Notepad) och skriv in följande rader: gmacro syskon_cgs do k20=1:10000 let c5(1)=k20 random 10 c3; discrete c1 c2. let c4(k20)=mean(c3) enddo endmacro Studera raderna i detta makro och försök förstå dem. Vad gör till exempel raden let c5(1)=k20? Var framgår det att det är urval som skall göras? Var beräknas medeltalet? I vilken kolumn sparar vi de medeltalen? Spara makrot (välj Save as type: All files ) med namnet syskon_cgs.mac på din hemarea (Z:\). Se till att Minitabs arbetsmapp är din hemarea genom att ge kommandot cd z: (detta behöver du bara göra en gång under en och samma Minitab-session). Kör nu makrot med kommandot %syskon_cgs. Det tar en liten stund för Minitab att göra alla urval. När makrot är klart ska du ha medeltal i C4. Gör ett histogram över dessa. Ser histogrammet ut att motsvara en normalfördelning? Beräkna vidare medelvärdet och standardavvikelsen av värdena i C4 med hjälp av kommandona mean och stdev. Verkar medelvärdet överensstämma någorlunda med populationsmedeltalet? Verkar standardavvikelsen överensstämma någorlunda med 10 3? Teorin säger ju att dessa överensstämmelser skall finnas, och detta gäller oavsett om populationen är normalfördelad eller ej.

4 Redigera makrot så att du i tur och ordning får urvalsstorlekarna a) 30 observationer b) 50 observationer c) 100 observationer Kör makrot för varje fall och jämför fördelningsform, medelvärde och standardavvikelse med motsvarande värden i den teoretiska normalfördelningen. Försök säga något om från och med vilken urvalsstorlek CGS verkar fungera. MATCHADE PAR, PARAT T-TEST Följande data beskriver mätningar av ett visst ämne upp- och nedströms om ett utsläpp. Tidpunkt Uppströms Nedströms 1 3,7 3,9 2 5,8 5,7 3 4,2 4,4 4 1,7 1,8 5 4,0 4,0 6 5,3 5,5 7 3,6 3,7 8 3,0 2,9 9 4,5 4,8 10 2,9 3,1 Vi vill avgöra om det finns en signifikant höjning av ämnet efter utsläppet. Mata in dessa data i Minitab så att mätvärdet uppströms hamnar i kolumn C2 och mätvärdet nedströms hamnar i kolumn C3. Välj Stat Basic statistics Paired t för att få fram följande dialogruta: 4

5 Välj C2 till fältet First sample och C3 till fältet Second sample. Klicka på Options så får du fram följande dialogruta. Confidence level kan stå som det står. Fundera över vad som skall stå i fälten Test mean respektive Alternative. Tänk på vilka differenser som bildas. Fyll i och klicka sedan på OK. Klicka gärna på Graphs för att se vilka grafer du kan få fram. Klicka slutligen på OK i huvudrutan. Du bör erhålla följande i Session-fönstret: MTB > Paired C2 C3; SUBC> Alternative -1. Paired T-Test and CI: C2; C3 Paired T for C2 - C3 N Mean StDev SE Mean C2 10 3,870 1,193 0,377 C3 10 3,980 1,197 0,379 Difference 10-0,1100 0,1370 0,0433 5

6 95% upper bound for mean difference: -0,0306 T-Test of mean difference = 0 (vs < 0): T-Value = -2,54 P-Value = 0,016 Vad kan du säga om höjningen av ämnet? JÄMFÖRELSER AV MEDELTAL I TVÅ OLIKA POPULATIONER Antag att vi har ett stickprov från var och en av två populationer och att vi vill jämföra medeltalen i dessa. Stickproven är: Stickprov 1 Stickprov 2 12,8 14,5 13,7 13,8 11,6 14,1 14,0 dvs. vi har ett stickprov med fyra observationer och ett med tre. Naturligtvis behöver vi inte ha tillgång till Minitab för att hantera så här små problem, men det blir snabbare hantering i denna övning och illustrationen fungerar lika bra. Mata in det första stickprovet i kolumn C4 och det andra i C5. Välj Stat Basic statistics 2- Sample t för att få upp följande dialogruta: Här kan man ha data lagrade på två sätt. Det ena (som är ganska vanligt i andra Minitabapplikationer) är att ha samtliga värden i en kolumn och en andra kolumn som för varje värde i den första anger vilket stickprov det kommer från. Detta kan med fördel användas vid 6

7 datainsamling då man för varje observation noterar värde och härkomst. Du ska dock använda den andra varianten här eftersom du har matat in de båda stickproven i var sin kolumn. Markera därför rutan Samples in different columns och välj C4 till fältet First och C5 till fältet Second. Klicka sedan i rutan Assume equal variances. Klicka på Options för att få upp följande ruta: Välj vad som ska utgöra nollhypotes i fältet Test difference. Det vanligaste är att välja defaultvärdet 0,0. Detta innebär att du testar nollhypotesen H 0: 1 = = 0 I vissa situationer kanske du istället vill testa H 0: 1 2 = d 0 där d 0 är ett tal 0 och då anger du förstås detta värde i fältet Test difference. I detta exempel vill vi avgöra om medeltalen skiljer sig åt. Vi har inte gjort några antaganden om att en eventuell differens mellan medeltalen är åt något visst håll. Välj därför att låta det stå som det står ovan och klicka på OK (två gånger). Kan vi med detta test påvisa någon skillnad? Hur stort blir antalet frihetsgrader för testvariabeln? Hur har de bestämts? (När dialogrutan för detta test är öppen kan man klicka på Help. Det går där att få reda på hur frihetsgraderna har beräknats. Detta beskrivs under see also Methods and formulas) JÄMFÖRELSER AV PROPORTIONER I TVÅ OLIKA POPULATIONER Vi ska nu också jämföra proportioner. Vi utgår från följande exempel: I en kommun undersöks invånarnas inställning till bensinskattelagstiftningen. Man gör därvid ett OSU om 200 tätortsbor och ett OSU om 150 glesbygdsbor. Bland tätortsborna är 114 positiva till bensinskattelagstiftningen och bland glesbygdborna är det 59 positiva. Frågan är om vi med dessa data kan påvisa att andelen positiva skiljer sig mellan tätortsbor och glesbygdsbor. Välj Stat Basic statistics 2 Proportions för att erhålla följande dialogruta: 7

8 Det finns tre sätt att mata in data här. De första två motsvarar de sätt vi matade in data vid jämförelse av två medeltal. I dessa fall skall vi alltså mata in binära data, t.ex. ettor och nollor eller Ja och Nej eller Man och Kvinna etc. Det tredje sättet är att mata in summerade data i form av antal försök (antal element i ett urval), och antal lyckade försök, dvs. i vårt fall antal positiva bland de svarande. Detta görs förstås för vart och ett av urvalen. Välj det tredje alternativet och mata in ovanstående värden på lämpligt sätt. Klicka på Options så kommer följande dialogruta upp: Markera rutan Use pooled estimate of p for test. Låt resten stå som det står och klicka på OK (två gånger). Utskriften bör bli följande: MTB > PTwo ; SUBC> Pooled. 8

9 Test and CI for Two Proportions Sample X N Sample p , , Difference = p (1) - p (2) Estimate for difference: 0, % CI for difference: (0, ; 0,280680) Test for difference = 0 (vs not = 0): Z = 3,27 P-Value = 0,001 Fisher's exact test: P-Value = 0,001 Studera åter det kommando som genereras och följ upp det med help. Det är ganska uppenbart att proportionerna skiljer sig åt i detta exempel. Vi gör nu antagandet att den verkliga skillnaden mellan p 1 och p 2 är 0,1. Detta kan formuleras i en nollhypotes: H 0: p 1=p 2+0,1 p 1 p 2 =0,1 Vi nöjer oss med en dubbelsidig alternativhypotes. Välj åter Stat Basic statistics 2 Proportions Data i den första dialogrutan bör finnas kvar sedan tidigare. Klicka därför direkt på Options Ändra denna gång i fältet Test difference till värdet 0.1 eftersom det är detta värde som nollhypotesen anger. Kan H 0 förkastas? Blir konfidensintervallet detsamma som tidigare? Bör det bli det? 2-TEST Vi utnyttjar åter det exempel vi hade ovan (om bensinskattelagstiftningen). Mer detaljerat ser sammanställda data ut på följande sätt: Tätortsbor Glesbygdsbor Positiv Negativ Ingen åsikt Använd de tomma kolumnerna C6 och C7 och mata in tabellen i dessa kolumner så att värdena 114, 55 och 31 hamnar i kolumn C6 och värdena 59 och 61 och 30 hamnar i kolumnen C7. Välj Stat Tables Chi-Square Test för att få upp följande dialogruta: 9

10 Här efterfrågas som vilka kolumner som innehåller den aktuella tabellen. Välj förstås C6 och C7 och klicka sedan på OK. Studera utskriften och notera det genererade kommandot som faktiskt blir ganska enkelt för ett sådant här test. Notera att du får beräknade förväntade frekvenser uträknade i tabellen. Notera även att beräkningen av den observerade χ 2 -summan redovisas term för term. Liksom i andra testapplikationer beräknas ett p-värde. Vad innebär detta p-värde här? Hur ser nollhypotesen ut? Färdiga tabeller kan alltså matas in i kolumner i Minitab och ett 2 -test av oberoende kan snabbt utföras. I andra situationer har vi snarare ett datamaterial vilket vi vill sammanställa i en tvåvägsindelad tabell, som sedan analyseras med 2 -test. Skapa därför ett datamaterial som innehåller informationen som sammanställts i korstabellen. Vi vill alltså ha två kolumner, en som talar om huruvida man är tätortsbo eller glesbygdsbo, och en som talar om vilken åsikt man har i frågan om bensinskattelagstiftningen. Välj nu Stat Tables Cross Tabulation and Chi-Square för att få upp följande dialogruta: 10

11 Som Categorical variables, välj kolumnen med information om åsikt om bensinskattelagstiftningen till fältet For rows och kolumnen med information om var man bor till fältet For columns. Klicka på rutan Chi-Square för att få upp följande dialogruta: Markera rutorna Chi-Square analysis, Expected cell counts och Each cell s contribution to the Chi-Square statistic. Avsluta med att klicka OK (två gånger). Jämför utskriften med den du fick tidigare då du körde Chi-square-applikationen direkt. Likheter och skillnader? För att ett 2 -test av detta slag ska vara giltigt krävs att alla förväntade frekvenser är 1 och att max 20% av dem är 5. Om så inte skulle vara fallet ges en varning i utskriften och om någon av de förväntade frekvenserna understiger 1 skrivs inget p-värde ut. En möjlig lösning på problemet är att slå samman en eller flera rader eller kolumner i tabellen. Man testar fortfarande ett oberoende, men med en mer sparsam kategorisering av svarsalternativen. 11

12 I ovanstående fall är testet giltigt, men skulle det inte ha varit det kan man t.ex. slå samman svarskategorierna Negativ och Ingen åsikt till en kategori. Avsluta alla program och logga ut från systemet. 12

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

DATORÖVNING 2: STATISTISK INFERENS.

DATORÖVNING 2: STATISTISK INFERENS. DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS.

DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS. DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning).

Läs mer

DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR

DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR STICKPROVSMEDELVÄRDEN I denna datorövning ska du använda Minitab för att slumpmässigt dra ett mindre antal observationer från ett större antal, och studera hur

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

DATORÖVNING 3: EXPERIMENT MED

DATORÖVNING 3: EXPERIMENT MED DATORÖVNING 3: EXPERIMENT MED SLUMPMÄSSIGA FÖRSÖK. I denna övning skall du med hjälp av färdiga makron simulera två olika försök och med hjälp av dessa uppskatta sannolikheter för ett antal händelser (och

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner . Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Introduktion och laboration : Minitab

Introduktion och laboration : Minitab Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Laboration 3 Inferens fo r andelar och korstabeller

Laboration 3 Inferens fo r andelar och korstabeller S0005M Statistik2 Lp 4 2016 Laboration 3 Inferens fo r andelar och korstabeller Laborationen behandlar Test av andelar med konfidensintervall och hypotestest Chi två test av oberoende mellan kvalitativa

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet

1. Lära sig utföra hypotestest för populationsproportionen. 2. Lära sig utföra test för populationsmedelvärdet Datorövning 3 Statistikens Grunder 2 Syfte 1. Lära sig utföra hypotestest för populationsproportionen 2. Lära sig utföra test för populationsmedelvärdet 3. Lära sig utföra test för skillnaden mellan två

Läs mer

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Introduktion till. Minitab version 14

Introduktion till. Minitab version 14 Statistiska institutionen LW n/pei/jb Introduktion till Minitab version 14 Innehållsförteckning 1 Introduktion Worksheeten datafönstret Minitabs menyer och Session-fönstret Att spara och öppna Minitab-filer

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

DATORÖVNING 2: TABELLER OCH STANDARD-

DATORÖVNING 2: TABELLER OCH STANDARD- DATORÖVNING 2: TABELLER OCH STANDARD- VÄGNING. I den här datorövningen använder vi Excel för att konstruera pivottabeller, som vi sedan använder för att beräkna standardvägda medeltal. Vi skapar också

Läs mer

Laboration 2 Inferens S0005M VT18

Laboration 2 Inferens S0005M VT18 Laboration 2 Inferens S0005M VT18 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16 Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

Datorövning 2 Multipel regressionsanalys, del 1

Datorövning 2 Multipel regressionsanalys, del 1 Datorövning 2 Multipel regressionsanalys, del 1 Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. analysera data enligt en multipel regressionsmodell

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Laboration 3: Urval och skattningar

Laboration 3: Urval och skattningar S0004M Statistik 1 Undersökningsmetodik. Laboration 3: Urval och skattningar Denna laboration handlar om slumpmässiga urval. Dessa urval ska användas för att uppskatta egenskaper hos en population. Statistiska

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Handledning för konstruktion av tabeller och diagram med Excel

Handledning för konstruktion av tabeller och diagram med Excel Handledning för konstruktion av tabeller och diagram med Excel 26 APRIL 2013 Inledning Excel är inte konstruerat för att i första hand utföra statistiska beräkningar, men en hel del sådant kan ändå göras.

Läs mer

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA.

DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. DATORÖVNING 1: INTRODUKTION TILL DATORSYSTEMET. BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. ALLMÄNT OM DATORERNA Datorsystemet består av persondatorer kopplade i ett nätverk till en större server. Operativsystemet

Läs mer

F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab

F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab Repetition: Gnuer i (o)skyddade områden χ 2 -metoder, med koppling till binomialfördelning och genetik. Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 Endast 2 av de 13 observationerna

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Datoro vning 1-2 Statistisk analys av kodade svar

Datoro vning 1-2 Statistisk analys av kodade svar Datoro vning 1-2 Statistisk analys av kodade svar 732G19 Utredningskunskap I Denna datorövning utförs i grupper om 2-4 personer och ska ses som en instruktion i att analysera resultaten av en enkät. Ingen

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel

2. Lära sig beskriva en variabel numeriskt med proc univariate 4. Lära sig rita diagram med avseende på en annan variabel Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

3.1 Beskrivande statistik

3.1 Beskrivande statistik 3.1 Beskrivande statistik En sammanställning av beskrivande statistik Summary for Vikt A nderson-darling Normality Test A -Squared 0.24 P-V alue 0.771 Mean 9.9294 StDev 1.7603 V ariance 3.0988 Skew ness

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Laboration 2 multipel linjär regression

Laboration 2 multipel linjär regression Laboration 2 multipel linjär regression I denna datorövning skall ni 1. analysera data enligt en multipel regressionsmodell, dvs. inkludera flera förklarande variabler i en regressionsmodell 2. studera

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om ni tycker att

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

SOPA62 - Kunskapsproduktion i socialt arbete

SOPA62 - Kunskapsproduktion i socialt arbete SOPA62 - Kunskapsproduktion i socialt arbete 2. Mer hypotesprövning och något om rapporten 1 Evidensbaserad behandling Behandling bygger på vetenskap och beprövad erfarenhet. "Beprövad erfarenhet" får

Läs mer