c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.

Storlek: px
Starta visningen från sidan:

Download "c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC."

Transkript

1 Lösningar till några övningar i geometri Kapitel 2 1. Formuleringen av övningen är tyvärr inte helt lyckad (jag ska ändra den till nästa upplaga, som borde ha kommit för länge sedan). Man måste tolka frågan så här: Vilka av trianglarna är kongruenta resp. likformiga för någon ordning mellan hörnen? Som jag sade på lektionen så är det inte säkert att ABC = A C B även om ABC = A B C, dvs ordningen i vilken man räknar upp hörnen är väsentlig för kongruens och (likformighet). Beteckna trianglarna uppifrån vänster med a till i. Trianglarna a, b och c har lika stora vinklar och sidan mellan 70- och 80-gradersvinklarna är 2, så de är kongruenta enligt VSV. f har lika stora vinklar, men här är en annan sida 2. Den är således likformig med a,b och c. d och i är liksidiga, men har sidorna 5 resp. 3, så de är likformiga. e och g är halva liksidiga trianglar och är likformiga eftersom sidorna inte är parvis kongruenta. h är en halv kvadrat och ensam i sitt slag. 2.a) Basvinkelsatsen ger att DBC = DCB. Om AC och BC vore lika långa, så skulle A = B och då följer att dessa två är 45 grader och C rät. Svaret är alltså nej, det måste inte gälla att AC = BC. b) Här är både ADC och BDC räta. Kongruensfallet SVS ger att ADC = BDC eftersom AD = BD och sidan CD är gemensam. Alltså är AC = BC, så svaret är ja. c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC. 1

2 Att ACD = DBC följer av att ( ACD) + ( DCB) = 90 = ( DCB) + ( DBC). d) Här ger bisektrissatsen omedelbart att AC = BC. 5. Av omvändningen till basvinkelsatsen följer att DE = DB = 2. Vi har DBE ABC. Ty B är gemensam och BD BA = 1 3 = BE BC, så detta följer av likformighetsfallet SVS. Eftersom DBE är likbent, DB = DE, så är även ABC likbent, alltså AC = AB = 6. 2

3 6. Eftersom F E är parallell med AB så är F EC ABC. Alltså är Detta ger x = 8/3. CF F E = CA AB dvs 4 x 4 = x 8. 7.a) Linjen genom C och D är transversal till BC och DE och BCD och CDE är alternatvinklar. Eftersom de är kongruenta, så är BC och DE parallella. Enligt topptriangelsatsen är ADE ABC. Då BD = CE, så följer att AD = AE. b) Låt ABC vara likbent och rätvinklig vid C (dvs en halv kvadrat). Vi kan säga att AC = BC = 1. Låt D vara mittpunkten på hypotenusan AB. Då är BD = 2/2. Avsätt E på AC så att CE = BD = 2/2. Då uppfyller ABC villkoren i uppgiften, eftersom både BCD och A är 45 grader. Men vi har inte AD = AE. 8. Eftersom BCE = CEB så följer enligt omvändningen till basvinkelsatsen att BCE är likbent, närmare bestämt att BE = BC = 2. Linjen CE 3

4 är transversal till linjerna BE och AF. Vinklarna CEB och F CE är alternatvinklar. Eftersom de är kongruenta, så är BE och AF parallella. Enligt topptriangelsatsen är ADC BDE, vilket ger Vi får BD = 8. AD BD = AC BE, dvs 4 + BD = 3 BD Eftersom ABC är likbent så är AE både bisektris och höjd. Alltså är BE = 6. Pythagoras sats ger AE 2 = AB 2 BE 2 = = 64, så AE = 8. Sätt x = BD. Då är DE = 6 x. Bisektrissatsen ger DE BD = AE AB dvs 6 x x = 8 10, varav x = BD = 10/3 och DE = 8/ Eftersom AB 2 + AC 2 = = 25 = 5 2 = BC 2, så är ABC rätvinklig vid A enligt omvändningen till Pythagoras sats. Låt D vara skärningspunkten mellan bisektrisen från B och sidan AC. Enligt bisektrissatsen gäller AD CD = AB CB dvs som ger AD = 3/2. Pyhtagoras sats igen ger AD 4 AD = 3 5, BD = AB 2 + AD 2 = (3/2) 2 = 3 5/2. 4

5 13. I figuren gäller u + w = t + v eftersom A = C. Vidare är u + v = t + w eftersom ( B) + u + v = ( D) + t + w = 180 och B = D. Adderar vi sambanden u+w = t+v och u+v = t+w ledvis så får vi 2u+v+w = 2t+v+w, vilket ger u = t. Nu är AC transversal till AB och CD och eftersom tydligen alternatvinklarna CAB och ACD är kongruenta, så är AB och CD parallella. Sätter vi in u = t i u + w = t + v så får vi v = w, vilket på samma sätt ger att AD och BC är parallella. Alltså är ABCD en parallellogram. 14. Kongruensfallet SSS ger att ABC = CDA. Alltså är CAB = ACD, vilket som i Övning 13 visar att AB och CD är parallella. På samma sätt visas att AD och BC är parallella. Alltså är ABCD en parallellogram. 5

6 17. I figuren nedan antar vi att AB och CD är parallella och lika långa. Linjen BD är transversal till AB och CD. Vinklarna ABD och BDC är alternatvinklar och således kongruenta. Kongruensfallet SVS ger nu att ABD = CDB. Ty AB = CD, ABD = BDC och sidan BD är gemensam. Detta ger att ADB = CBD, vilket i sin tur visar att AD och BC är parallella. Ty BD är transversal till AD och BC och ADB och CBD är alternatvinklar. Alltså är ABCD en parallellogram. 19. Låt ABCD vara en parallellogram och antag först att den är en romb, dvs att AB = CD = AD = BC. Då är ABC = ADC enligt SSS. Alltså är BCA = DCA. Kongruensfallet SVS ger nu att EBC = EDC. Ty sidan EC är gemensam, BCA = DCA och BC = DC. Det följer nu att BEC = DEC, varför de båda måste vara räta. Vi antar nu omvänt att diagonalerna i parallellogrammen ABCD är vinkelräta. Diagonalerna i en parallellogram delar varandra mitt itu, så BE = DE. I BEC och DEC är sidan CE gemensam och vinklarna BEC och DEC räta, så SVS ger att de är kongruenta. Alltså är BC = CD. 6

7 22. Vinklarna BAE och DF E är alternatvinklar med avseende på de parallella linjerna AB och CD och transversalen AF. Alltså är BAE = DF E. På samma sätt får vi ABE = F DE, så VVV ger att ABE F DE. Alltså gäller DF / AB = F E / EA = 9/12 = 3/4. Topptriangelsatsen ger ABG F CG, så F C F G = AB AG. Nu är och så vi får ekvationen Detta ger F G = 7. F C DC DF = = 1 DF AB AB AB = = 1 4 F G AG = F G F G = AF + F G 21 + F G, F G 21 + F G = Eftersom AE = DE så är AED likbent och alltså EAD = EDA. Beteckna vinklarnas mått i grader med u. På samma sätt får vi EAB = EBA och vi betecknar deras mått med v. Vinkelsumman i ABD är 180 grader, vilket ger 2u + 2v = 180 och alltså u + v = 90. Vinkeln A i fyrhörningen är tydligen rät och analogt visar man att alla vinklarna är räta. Kapitel 3 7

8 1. Låt E vara cirkelns medelpunkt och drag radierna EB och EC. Då är EBA och ECA räta vinklar eftersom EB och EC är radier och AB och AC tangenter. Alltså är ( BEC) = = 142. Enligt periferivinkelsatsen är ( BDC) = 142 /2 = Vinkelsumman i en femhörning är 540 grader, så ( E) = 90. Låt F vara cirkelns medelpunkt. Vinklarna B och ADC står båda på kordan AC, fast på olika sidor om denna. Medelpunktsvinkeln som svarar mot periferivinkeln B är 240 grader. Medelpunktsvinkeln som svarar mot periferivinkeln ADC är = 120 grader. Alltså är ( ADC) = 60. På samma sätt får vi ( ACD) = 90. Detta ger nu ( DAC) = = 30 och ( DAE) = 180 ( ) 90 = BDA är likbent eftersom både DB och DA är radier. Alltså är ( DAB) = 90 ( BDA) /2 och på samma sätt får vi ( CAE) = 90 ( CEA) /2. Addition av dessa ger ( DAB) + ( CAE) = 180 ( BDA) + ( CEA). 2 I fyrhörningen DECB är både DBC och ECB rät, så ( BDA) + ( CEA) = 360 ( DBC) ( ECB) = 180, vilket ger ( DAB) +( CAE) = 90 och till slut ( BAC) = = 90. 8

9 6. Eftersom AB är en diameter så är periferivinkeln ACB rät. Pythagoras sats ger BC = AB 2 AC 2 = = 12. Anmärkning: Själva beräkningen blir enkel om man gör så här: = (13 + 5)(13 5) = 18 8 = = ger = = = De två tangenterna från en punkt till en cirkel är lika långa. Detta ger AB + CD = AF + BF + DH + CH = AE + BG + DE + CG = AE + DE + BG + CG = AD + BC. 8. Enligt andra fallet i kordasatsen är AP BP = CP DP. Låt cirkelns radie vara r. Då är CP = MP r och DP = MP + r. Vi får AP BP = MP 2 r 2, så r 2 = = 64 och r = Sätt MP = x. Enligt kordasatsen gäller (5/2) 2 = (5 x)(5 + x), vilket ger x 2 = 5 2 (5/2) 2 = 5 2 3/2 2, så x = 5 3/2. 9

10 13. Enligt kongruensfallet SVS är ABE = CDE och alltså är EAB = ECD. Beteckna vinklarnas mått i grader med u. På samma sätt får vi EAD = ECB och vi betecknar deras mått med v. Eftersom ABCD är inskriven i en cirkel så gäller u + v + u + v = 180, så u + v = 90, dvs A och C är räta. Att de andra vinklarna är räta följer analogt. Kapitel 9 3. Enligt periferivinkelsatsen är DAC = DBC eftersom de står på samma båge. Av samma skäl är ADB = ACB. Eftersom AD = BC, så följer av kongruensfallet VSV att AED = BEC. Alltså är AE = BE och DE = CE. Båda trianglarna ABE och CDE är tydligen likbenta. Eftersom AEB = DEC (de är ju vertikalvinklar) så ger likformighetsfallet SVS att ABE CDE. Således har vi två kongruenta alternatvinklar, BAC = DCA, vilket medför att AB och CD är parallella. 10

11 7. Pythagoras sats ger BC 2 = AC 2 + AB 2 = = 169, dvs BC = 13. Kordasatsens andra fall ger AC DC = BC EC eller 12 4 = 13 EC, så EC = 48/ Beteckna det sökta avståndet med x meter och avståndet mellan Jönköping och Askersund med s meter. Låt jordradien vara R meter. Avståndet s är litet i jämförelse med jordens omkrets, så vi kan anta att avståndet mellan de två städerna mätt längs den räta linjen mellan dem också är lika med s. Kordasatsens första fall ger (s/2) 2 x(2r x). Nu är x litet i jämförelse med R, så vi får x s 2 /4 2R = s 2 /8R. Insättning av s = meter och R = meter ger x = Med beteckningar som i figuren ger Pythagoras sats på DEC, AED och EBC y 2 + z 2 = 3 2, x = y 2 resp. x = z 2. Insättning av y 2 och z 2 i den första ekvationen ger x x = 3 2, varav x = 2. Rektangelns area är således

12 23. En regelbunden polygon är definitionsvis konvex. Alla sidor lika långa och alla vinklar lika stora. I figuren är alla vinklar vid medelpunkten G lika med 360/6 = 60 grader. Trianglarna AGB osv är likbenta, så det följer att GAB osv alla är 60 grader. Men då är trianglarna liksidiga, så längden av diagonalen AD är 2s, där s är sidan i sexhörningen. Låt längden av den andra diagonalen AC vara x. Då ger Pythagoras sats att (x/2) 2 + (s/2) 2 = s 2, varav x = s Låt E och F vara cirkelns tangeringspunkter med sidorna BC respektive AC och sätt x = AD. Eftersom de två tangenterna från en punkt till en cirkel är lika långa, så är då även AF = x. Vi får också BD = 3 x och CF = 6 x. Alltså är CE = 6 x och BE = 3 x. Då BC = BE + CE så får vi ekvationen 5 = (3 x) + (6 x), som ger x = Använder vi Pythagoras sats två gånger så får vi r 2 = a och r 2 = (a + 4) Alltså är a = (a + 4) , vilket ger a = 7/2. Insättning t ex i det första sambandet ger sedan r = 25/2. 12

13 60. Vi börjar med att studera höjden från ett av hörnen och dess fotpunkt (a är längden av sidan som står mot hörnet A osv): Pythagoras sats på ABD och ADC ger c 2 = (a x) 2 + h 2 respektive b 2 = x 2 + h 2. Detta ger c 2 = a 2 2ax + x 2 + h 2 = a 2 2ax + b 2, vilket ger x = a2 + b 2 c 2. 2a Vi kan nu beräkna längden av medianen från A: 13

14 I figuren ovan är E medianens fotpunkt. Pythagoras sats igen ger m 2 = y 2 + h 2 = (a/2 x) 2 + h 2 = a 2 /4 ax + x 2 + h 2 = a 2 /4 (a 2 + b 2 c 2 )/2 + b 2 = ( a 2 + 2b 2 + 2c 2 )/4. I nästa figur är F fotpunkten för bisektrisen från A. Enligt bisektrissatsen är (a z)/z = c/b, vilket ger z = ab/(b + c). Vi får nu d 2 = t 2 + h 2 = (z x) 2 + h 2 = z 2 2zx + x 2 + h 2 = z 2 2zx + b 2. Sätter vi in z = ab/(b + c) och räknar en stund så får vi till slut d 2 = bc(b2 + 2bc + c 2 a 2 ) bc(a + b + c)( a + b + c) (b + c) 2 = (b + c) I figuren är E, F, G, H sidornas mittpunkter. Vi påstår att ABC F BG. Detta följer av likformighetsfallet SVS eftersom AB / F B = BC / BG = 2 och att vinkeln B är gemensam. Alltså är BAC = BF G. Nu är AB transversal till F G och AC och vinklarna BAC och BF G är likställda. Det följer att F G är parallell med diagonalen AC. På samma sätt ser vi att även EH är parallell med AC och vi har visat att F G och EH är parallella. Analogt visar vi att EF och GH är parallella och vi ser att EF GH är en parallellogram. 14

Kongruens och likformighet

Kongruens och likformighet Kongruens och likformighet Torbjörn Tambour 23 mars 2015 I kompendiet har jag tagit kongruens- och likformighetsfallen mer eller mindre som axiom, vilket jag nu tycker är olyckligt, och de här sidorna

Läs mer

MVE365, Geometriproblem

MVE365, Geometriproblem Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag

Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart

Läs mer

Finaltävling i Umeå den 18 november 2017

Finaltävling i Umeå den 18 november 2017 KOLORNA MATEMATIKTÄVLING venska matematikersamfundet Finaltävling i Umeå den 18 november 017 1. Ett visst spel för två spelare går till på följande sätt: Ett mynt placeras på den första rutan i en rad

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

Repetition inför tentamen

Repetition inför tentamen Sidor i boken Repetition inför tentamen Läxa 1. Givet en rätvinklig triangel ACD, där AD = 10 cm, AB = 40 cm och BC = 180 cm. Beräkna vinkeln BDC. Läxa. Beräkna omkretsen av ABC, där BE = 4 cm, EA = 8

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan

Läs mer

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Area och volym hos Euklides och Hilberts tredje problem

Area och volym hos Euklides och Hilberts tredje problem Area och volym hos Euklides och Hilberts tredje problem Torbjörn Tambour Mullsjö den 20 juni 2018 Inledning Att arean av en triangel ges av formeln A = b h 2, där b är (längden av) basen och h (längden

Läs mer

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006

Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 Antagningsprov till universitet, Sofia (Bulgarien) 7 maj 2006 (Enligt "nytt format" : fler och lättare uppgifter jämfört med hittills rådande tradition se sid.5. Alla uppgifter värda lika mycket.) 1. Lös

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 17, 1934 Första häftet 654. Lös ekvationen sin x + cos x + tan x + cot x = 2. (S. B.) 655. Tre av rötterna till ekvationen x 4 + ax 2 + bx + c = 0 äro x 1, x 2 och x 3. Beräkna x 2 1 + x2 2 + x2

Läs mer

Mätning och geometri

Mätning och geometri Mätning och geometri LMN100 Matematik, del 2 I den här delen av kursen skall vi gå igenom begrepp som längd, area och volym. Vi skall också studera Euklidisk geometri och bevisa satser om och lära oss

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Föreläsning 1 5 = 10. alternativt

Föreläsning 1 5 = 10. alternativt Föreläsning 1 101 a) Beräkna 5 + ( 8) = ( ) Kommentar: Vi använder parenteser för att förtydliga negativa tal, här ( 8) och ( ). 101 b) Beräkna 9 16 = 5 Kommentar: Egentligen borde man skriva 9 som ( 9),

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 35, 1952 Första häftet 1793. I en cirkel med centrum O och radien R är inskriven en spetsvinklig triangel ABC, vars höjder råkas i H. Bestäm maximum och minimum för summan av PO och PH, när punkten

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

EUKLIDISK GEOMETRI. Torbjörn Tambour. Matematiska institutionen Stockholms universitet Första upplagan 2002 Eftertryck förbjudes eftertryckligen

EUKLIDISK GEOMETRI. Torbjörn Tambour. Matematiska institutionen Stockholms universitet Första upplagan 2002 Eftertryck förbjudes eftertryckligen EUKLIDISK GEOMETRI Torbjörn Tambour Matematiska institutionen Stockholms universitet Första upplagan 2002 Eftertryck förbjudes eftertryckligen Postadress Matematiska institutionen Stockholms universitet

Läs mer

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x.

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x. TENTAMENSSKRIVNING Endimensionell analys, B1 010 04 06, kl. 8 1 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. 1. a) Lös ekvationen cos sin + 1 = 0. (0.) b) Lös

Läs mer

Problemlösning med hjälp av nycklar

Problemlösning med hjälp av nycklar Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Kvalificeringstävling den 26 september 2017

Kvalificeringstävling den 26 september 2017 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 41, 1958 Årgång 41, 1958 Första häftet 143. I en given cirkel är inskriven en triangel ABC, i vilken b + c = ma, där m är ett givet tal > 1. Sök enveloppen för linjen BC, då hörnet A är

Läs mer

Enklare uppgifter, avsedda för skolstadiet

Enklare uppgifter, avsedda för skolstadiet Elementa Årgång 1, 198 Årgång 1, 198 Första häftet 97. Ett helt tal består av 6n siffror. I var och en av de på varandra följande grupperna av 6 siffror angiva de 3 första siffrorna samma tresiffriga tal

Läs mer

Lathund geometri, åk 7, matte direkt (nya upplagan)

Lathund geometri, åk 7, matte direkt (nya upplagan) Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 6, 9 Första häftet 575. En normalkorda i en parabel är given till längd och läge. Bestäm enveloppen för parabelns styrlinje. 576. Att genom en given punkt draga en sekant till två givna cirklar

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 30, 947 Årgång 30, 947 Första häftet 500. Om (x 0 ; y 0 ; z 0 ) är en lösning till systemet cos x + cos y + cos z = 0, sin x+sin y+sin z = 0, så äro (x 0 +y 0 ; y 0 +z 0 ; z 0 +x 0 ) och

Läs mer

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13 Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med

Läs mer

Enklare matematiska uppgifter. Årgång 21, Första häftet

Enklare matematiska uppgifter. Årgång 21, Första häftet Elementa Årgång 21, 1938 Årgång 21, 1938 Första häftet 957. En cirkel, en punkt A på cirkeln och en punkt B på tangenten i A äro givna. Att konstruera den punkt P på cirkeln, för vilken AP + BP är maximum.

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 33, 1950 Första häftet 1679. Från punkten T dragas tangenterna till en parabel med brännpunkten F. Normalerna i tangeringspunkterna råkas i N. Visa, att T N 2 = NF 2 + 3T F 2. (R. Ingre.) 1680.

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 4, 94 Årgång 4, 94 Första häftet 47. Om en triangels hörn speglas i motstående sidor, bilda spegelbilderna en liksidig triangel. Beräkna den ursprungliga triangelns vinklar. 48. Att konstruera

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 34, 1951 Första häftet 1739. I varje triangel är abc : r a 3 : r a + b 3 : r b + c 3 : r c. 1740. I varje triangel är (1 + cos A) 2 (1 cos A) (1 + cos A). 1741. Sidorna AC och BC i triangeln ABC

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 42, 1959 Årgång 42, 1959 Första häftet 2193. Tre cirklar med radierna r 1, r 2 och r 3 skär varandra under räta vinklar två och två. Hur stor är ytan av den triangel, som har sina hörn

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

geometri ma B 2009-08-26

geometri ma B 2009-08-26 OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 31, 1948 Första häftet 1559. Varje lösning till systemet (x a) 2 + (y b) 2 x 2 + y 2 = (x c)2 + (y d) 2 (x 1) 2 + y 2 = (a c) 2 + (b d) 2 är rationell i a, b, c, d. 1560. Om kurvan y = a 0 x 5 +

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 40, 1957 Första häftet 2082. I punkterna 0, v, 2v,... nv på enhetscirkeln placeras massorna ( n ( 0), n ) ( 1,..., n ) n resp. Hur långt från cirkelns medelpunkt ligger tyngdpunkten för detta massystem?

Läs mer

Jag vill också tacka min familj, som har varit mycket stöttande under tiden jag har läst matematik.

Jag vill också tacka min familj, som har varit mycket stöttande under tiden jag har läst matematik. ËÂ ÄÎËÌ Æ Á Ê Ì Æ Á Å Ì Å ÌÁÃ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ÍØÚ Ð Ø Ö ÙØ ÖÒ ÔÐ Ò ÓÑ ØÖ Ú Ï ÑÓÙÒ ¾¼½¾ ¹ ÆÓ ¾ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ½¼ ½ ËÌÇ ÃÀÇÄÅ ÍØÚ Ð Ø Ö ÙØ

Läs mer

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.

Geometri. G. Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. . G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande tre (fyra) delområden: MGF Förberedande mätning och geometri

Läs mer

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt. Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 18, 1935 Första häftet 75. En kub är given. Man betraktar de 4 plan, som vart och ett innehåller en kantlinje i kuben och mittpunkterna till två andra. Hur stor del av kubens volym utgör det sammanhängande

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till

Läs mer

Skalärprodukt (lösningar)

Skalärprodukt (lösningar) Skalärprodukt (lösningar) 404. Nej : 40. Utnyttja definitionen u v u v cos θ u v 4 6 u och distributiviteten (u v) (u + v) u u 6v u + u v v v 4 5 6 0 (Ritar man noggrant, ser man att u v och u + v mycket

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 32, 1949 Första häftet 1619. Den ena basytan i ett prisma är ABCD... H. Sidokanterna äro AA 1, BB 1, CC 1, DD 1,..., H H 1. Punkterna A 1, B 1, C och H ligga i ett plan, som delar prismats volym

Läs mer

Kompendium om. Mats Neymark

Kompendium om. Mats Neymark 960L09 MATEMATIK FÖR SKOLAN, Lärarlftet 2009-02-24 Matematiska institutionen Linköpings universitet 1 Inledning Kompendium om KÄGELSNITT Mats Nemark Detta kompendium behandlar parabler, ellipser och hperbler

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 69, 1986 Årgång 69, 1986 Första häftet 3420. Två ljus av samma längd är gjorda av olika material så att brinntiden är olika. Det ena brinner upp på tre timmar och det andra på fyra timmar.

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Endimensionell Analys. Föreläsningsanteckningar, HT 2018 Mikael P. Sundqvist

Endimensionell Analys. Föreläsningsanteckningar, HT 2018 Mikael P. Sundqvist Endimensionell Analys B1 Föreläsningsanteckningar, HT 2018 Mikael P. Sundqvist OM DESSA ANTECKNINGAR Dessa föreläsningsanteckningar kom till under sensommaren och hösten 2018, och de är i skrivande stund

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 46, 1963 Årgång 46, 1963 Första häftet 2405. På fokalaxeln till en hyperbel, vars ena brännpunkt är F, finns en punkt K så belägen, att PK 2 : PF PF har ett konstant värde, när P genomlöper

Läs mer

Geometri med fokus på nyanlända

Geometri med fokus på nyanlända Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara

Läs mer

Elevers kunskaper i geometri. Madeleine Löwing

Elevers kunskaper i geometri. Madeleine Löwing Elevers kunskaper i geometri Madeleine Löwing Elevers kunskaper i mätning och geometri Resultaten från interna=onella undersök- ningar, såsom TIMSS, visar ac svenska elever lyckas mindre bra i geometri.

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 27, 1944 Första häftet 1316. I vilka serier äro t1 3 +t3 2 +t3 3 + +t3 n = (t 1 +t 2 +t 3 + +t n ) 2 för alla positiva heltalsvärden på n? 1317. Huru stora äro toppvinklarna i en regelbunden n-sidig

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 6, 1943 Årgång 6, 1943 Första häftet 161 I en tresidig pyramid äro sidokanterna l cm, baskanterna a, b och c cm I topphörnet är kantvinklarnas summa 360 Visa, att a + b + c = 8l 16 Visa,

Läs mer

y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32

y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32 6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel

Läs mer

Pangea Matematiktävling FRÅGEKATALOG. Finalomgång 2016 Årskurs 9

Pangea Matematiktävling FRÅGEKATALOG. Finalomgång 2016 Årskurs 9 FRÅGEKATALOG Finalomgång 2016 Årskurs 9 Pangea Regler & Instruktioner Svarsblankett -Vänligen fyll i förnamn, efternamn och årskurs på svarsblanketten. -Vi rekommenderar deltagarna att använda en blyertspenna

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Kvalificeringstävling den 30 september 2014

Kvalificeringstävling den 30 september 2014 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,

Läs mer

Vektorgeometri. En inledning Hasse Carlsson

Vektorgeometri. En inledning Hasse Carlsson Vektorgeometri En inledning Hasse Carlsson Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 01 Innehåll 1 Inledning Geometriska vektorer.1 Definition av vektorer........................

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 30 augusti 01 Innehåll 3 Geometri och trigonometri 8 3.1 Euklidisk geometri........................... 8 3.1.1 Kongruens och likformighet..................

Läs mer

Att skala om, att mäta och att avbilda avstånd Jana Madjarova, Matematiska vetenskaper, Chalmers/GU

Att skala om, att mäta och att avbilda avstånd Jana Madjarova, Matematiska vetenskaper, Chalmers/GU Kleindagarna 2013, IML, Stockholm, 14-16 juni 2013 Att skala om, att mäta och att avbilda avstånd Jana Madjarova, Matematiska vetenskaper, Chalmers/GU Det kommer nog inte som någon större överraskning

Läs mer

Studieplanering till Kurs 2b Grön lärobok

Studieplanering till Kurs 2b Grön lärobok Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 5, 94 Årgång 5, 94 Första häftet 04. Toppen i en pyramid utgöres av ett regelbundet n-sidigt hörn. Tre på varandra följande sidokanter ha längderna a, b och c. Beräkna de övrigas längd.

Läs mer

Finaltävling i Stockholm den 22 november 2008

Finaltävling i Stockholm den 22 november 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

2.2 Tvådimensionella jämviktsproblem Ledningar

2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 36, 1953 Årgång 36, 1953 Första häftet 1848. Triangeln ABC är inskriven i cirkeln O, vars tangenter i B och C råkas i D. Sök sambandet mellan triangelns sidor, då punkterna A och D ligga

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Cirklar: tangenter. 7. Genom ändpunkterna A och B av en cirkels diameter dras tangenterna. En tredje tangent skär dessa i P resp. Q.

Cirklar: tangenter. 7. Genom ändpunkterna A och B av en cirkels diameter dras tangenterna. En tredje tangent skär dessa i P resp. Q. Cirklar: tangenter En tangent till en cirkel definieras som en rät linje, som har eakt en punkt gemensam med cirkeln tangeringspunkten (till skillnad mot andra linjer som har två skärningspunkter eller

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS.0.08 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Vid kartläggningen av elevernas kunskaper har vi använt Skolverkets

Vid kartläggningen av elevernas kunskaper har vi använt Skolverkets Madeleine Löwing & Wiggo Kilborn Elevers kunskaper i mätning och geometri I Nämnaren nr 4, 2009, finns en artikel som beskriver svenska elevers kunskaper i aritmetik. Den beskriver första delen av ett

Läs mer

Enklare uppgifter, avsedda för skolstadiet

Enklare uppgifter, avsedda för skolstadiet Första häftet 413. Eliminera x, y och z ur systemet x y + y z + z x = a x z + y x + z y =b ( x y + z )( x x y + y )( y z z + z ) =c x (A. H. P.) 414. Den konvexa fyrhörningen ABCD är omskriven kring en

Läs mer

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Liten tävling Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Uttryck talet 2013 genom att bara använda fyror. Försök att använda så få fyror som möjligt. Tillåtna operationer är de fyra

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET av Anders Olsson 07 - No 6 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 06 9 STOCKHOLM Anders Olsson Självständigt

Läs mer

Enklare uppgifter, avsedda för skolstadiet.

Enklare uppgifter, avsedda för skolstadiet. Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en

Läs mer

Euklidisk geometri. LMA100, vt 06

Euklidisk geometri. LMA100, vt 06 Euklidisk geometri Geometri är en av de äldsta vetenskaperna. Många resultat var redan bekanta i de egyptiska, babyloniska och kinesiska kulturerna. Själva ordet geometri kommer från grekiska och betyder

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 4

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 4 Kopletterande lösningsförslag och ledningar, Mateatik 3000 kurs B, kapitel 4 Kapitel 4.1 4101 Eepel so löses i boken. 410 Triangelns vinkelsua är 180º. a) 40º + 80º + = 180º b) 3º + 90º + = 180º = 180º

Läs mer

1.Introduktion i Analys

1.Introduktion i Analys Pass 1 0.1 Olika tal 1.Introduktion i Analys Naturliga talen N = {0, 1, 2, 3,...}. Ett primtal är ett naturligt tal som är större än 1 och jämnt delbart endast med sig själv och med 1. Sats Varje naturligt

Läs mer